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From the generalized scheme of random walks on the comblike structure, it
is shown how a 1/2-order fractional Fokker–Planck equation can be derived.
The operator method for the moments associated with the distribution function
p(x, t) is used to solve the resulting equation. Also the anomalous diffusion
along the backbone of the structure has been considered.
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1. INTRODUCTION

As is known, anomalous diffusion characterizing via the mean square
displacement,

OX2(t)P ’ tb, b=2/(2+h), (1)

is deviating from the normal diffusion behavior; b=1. Such deviation
has for instance been observed for transport, including charge transport
in amorphous semiconductor, (1–3) the dynamics of a bead in a polymer
network, (4) and diffusion of water in biological tissues (5) or, more generally,
in the disordered systems. (6)

According to the value of the anomalous diffusion exponent b, one
can distinguish between superdiffusion domain (b > 1), such as the
anomalous diffusion of adsorbed molecules, (7) and subdiffusion domain
(b < 1), such as diffusion on fractals.



On fractals supports, the change of the diffusion character is due to
the strong tortuous nature of ways (twistedness) and presence of impasses,
i.e., dead ends on current ways or the lacunarity of the structure, that is,
the presence of holes of all length scales. (6) In the following, we mainly deal
with the subdiffusion domain.
Normal diffusion under the influence of an external force field is often

modeled by one dimension Fokker–Planck equation (FPE)

“p(x, t)/“t=LFP p(x, t), (2)

where LFP is the Fokker Planck operator given by,

LFP={“2/“x2[D(x)]−“/“x[V(x)]}. (3)

In Eq. (2), p(x, t) is the probability density for the position x of the diffus-
ing particle at time t. D(x) and V(x) are coefficients associated with the
diffusion and external drift respectively. Usually, Eq. (2) can be derived
following the Langevin approach, that is starting from the stochastic equa-
tion of motion for the dynamical variable whose probability distribution
we are interested in. (8, 9) The basic properties of FPE are the exponential
decay of the single modes in time,

Tn(t)=exp(−ln, 1t), (4)

where ln, 1 is the eigenvalue of the operator LFP. In the absence of an
external drift term, i.e., V(x)=0, the equation describes a Gaussian evolu-
tion as may be anticipated based on the central limit theorem. Also the
square-mean displacement OX2(t)P is proportional to time t, i.e., b=1.
In analogy to the description of normal diffusion in an external field

via the FPE, one may expect to obtain FPE involved with a fractional
integral operator “−bt p(x, t), (0 < b < 1), to model anomalous diffusion
under the influence of an external field. It is worth mentioning that frac-
tional kinetic equations have been extensively shown to be a well-suited
tool for the description of anomalous diffusion [ref. 10 and refs. therein;
refs. 11–13]. Here we demonstrate the derivation of fractional Fokker–
Planck equation (FFPE) with b=1/2 by using the comblike model as an
extension to ref. 14. The comb structure was put forward in refs. 15–19,
and as shown in Fig. 1, it consists of a main channel or backbone along the
x-axis where the random walker diffusively connects with an infinite length
of fingers. Using the technique of the generating functions, it was shown
that the mean-square displacement along the axis of structure depends
on time in the anomalous way (1) with the exponent h=2; i.e., b=1/2.
So, the main purpose of the present paper is to derive the FFPE which
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Fig. 1. Comb structure: the conducting axis y=0 has fingers going to infinity.

essentially differs from the usual FPE, i.e., instead of the first order deriva-
tive of time, a derivative of the fractional order b=1/2 arises,

p(x, t)=0D
−1/2
t Lg

FPp(x, t), (5)

with

Lg
FP=“

2/“x2[Dg(x)]−“/“x[Vg(x)] (6)

where

0D
−1/2
t p(x, t)=1/C(1/2) F

t

0
dtŒ p(x, tŒ)/(t− tŒ)1/2, (7)

is the Liouvell–Riemann integral operator. (20) Dg(x) and Vg(x) are referred
to as the diffusion and drift coefficients along the main axis of the comblike
structure under consideration. C(m) is the Gamma function.
The paper is organized as follows: in Section 2 we use a comblike model

to derive the FFPE with 1/2 order time evolution operator. Section 3
is devoted to solve the resulting equation via the operator method. The
anomalous diffusion along the axis of structure is considered in the last
section.
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2. 1/2-ORDER FFPE ON COMB STRUCTURE

To derive the FFPE, we recall the usual description introduced in
ref. 14. Consider the x-component of the current change along the axis of
structure (y=0),

Jx=d(y)[V(x)−“/“x D(x)] p(x, y, t), (8)

D(x) and V(x) are assumed to be the diffusion coefficient and the potential
acting on the diffusion particle along the x-axis, respectively. The y-com-
ponent of the current along the fingers is given by

Jy=−Dy “p(x, y, t)/“y, (9)

Dy is the diffusion coefficient along the fingers and assumed to be constant.
From the continuity equation,

“p(x, y, t)/“t=−[“Jx/“x+“Jy/“y], (10)

one can write the corresponding diffusion-drift equation as,

[“/“t−d(y) “/“x(“/“x D(x)−V(x))−Dy “2/“y2] p(x, y, t)=0, (11)

where p(x, y, t) is the concentration of the particles on the comb structure.
Equation (11) can be rewritten as a normal diffusion along the fingers with
a non-uniform right term,

[“/“t−Dy “2/“y2] p(x, y, t)=d(y) “/“x(“/“x D(x)−V(x)). (12)

It is known that the homogenous part of the above Eq. (12) admits the
Gaussian distribution,

G(y,t)=exp−(y2/4t)/(pDyt)1/2. (13)

Employing the integration over the source term, we receive the integral
equation,

p(x, y, t)=F dyŒ dtŒG(y−yŒ, t− tŒ) d(yŒ) “/“x(“/“xD(x)−V(x)) p(x, yŒ, tŒ).
(14)

Equation (14), upon integration over yŒ, gives the closed equation for the
concentration of the particles along the main channel,

p(x, t)=“/“x(“/“x D*(x)−V*(x)) 0D
−1/2
t p(x, t), (15)
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under the following consideration,

D*(x)=D(x)/Dy, V*(x)=V(x)/Dy. (16)

It will become obvious that Eq. (15) represents the fractional FPE
which is recently proposed and discussed in ref. 10. Assuming that the dif-
fusion coefficient and the external drift are given by D*(x)=(x1−2e/4), and
V*(x)=(x−2e/4) respectively, where e is an arbitrary parameter that leads
to different types of FFPE. Therefore, the FFPE takes the general form

p(x, t)=0D
−1/2
t [“2/“x2(x1−2e/4)−“/“x(x −2e/4)] p(x, t). (17)

Making use of the replacements, (21)

p(x, t)=(2)1/2 x (2e−1)/2w(z, y),

y=t,

z=[2(2)1/2/2e+1] x (2e+1)/2,

(18)

under the constraint that e ]−1/2 (we remark that at e=−1/2, this
problem can be treated directly from Eq. (17) with the same technique
introduced later), Eq. (17) reduces to the fractional FPE associated with
fractional Brownian motion as,

w(z, y)=0D
−1/2
y L̄FPw(z, y), (19)

where L̄FP is given by,

L̄FP=“2/“z2(w(z, y)/2)−“/“z(w(z, y)/2z). (20)

In order to get a formal solution for Eq. (19), we use the Laplace–Mellin
technique (22) as follows: we define,

w(z, u)=L(w(z, y), u)=F
.

0
dy exp(−uy) w(z, y), (21)

as the Laplace transform and,

w(z, s)=M(w(z, y), s)=F
.

0
dy y s−1w(z, y), (22)
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as the Mellin transform of w(z, y). The connection between Laplace and
Mellin transforms is defined by,

w(z, s)=[1/C(1−s)] M(L(w(z, y), u), 1−s). (23)

Hence, taking Eq. (19) into the Laplace domain yields,

w(z, u)=u −1/2(u1/2−L̄FP) −1 w(z, 0), (24)

assuming that w(z, 0) is the initial condition. Inserting Eq. (24) into
Eq. (23) one finds,

w(z, s)=(2C(2s) C(1−2s)/C(1−s))(L̄FP)−2s w(z, 0). (25)

Comparing the inverse of Mellin transform with the definition of
H-function (23, 24) gives,

w(z, y)=2H1112((L̄FP)2 y| (0, 2)(0, 2)(0, 1)) w(z, 0). (26)

Here,

Hmnpq (Z)=H
mn
pq (Z| (aj , aj)j=1· · · p(bj , bj)j=1· · · q

), (27)

denotes the H-function, and can be represented by contour integration as,

Hmnpq (Z)=(1/2pi) F ds(A(s) B(s))/C(s) D(s), (28)

with,

A(s)=D
m

j=1
C(bj−bj s),

B(s)=D
n

j=1
C(1−aj−aj s),

C(s)= D
q

j=1+m
C(1−bj−bj s),

(29)

and

D(s)= D
p

j=1+n
C(aj−aj s).
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The H-function can be written in a series expansion such as

w(z, y)=3 C
.

r=0

(L̄FP) r y1/2

C((r/2)+1)
4 w(z, 0), (30)

or

w(z, y)=E1/2(L̄FPy1/2) w(z, 0), (31)

Eb(Z) denotes the Mittag–Leffler function and the series representation for
it is given by, (23)

Eb(Z)=3 C
.

r=0

Z r

C(br+1)
4 . (32)

Evidently the solution (31) represents very slow non-exponential dynamics
approaching algebraic time decay in the long limit. When the order of
FFPE tends to the usual order of time evolution operator, it is easy to
show that Eq. (31) reduces to the exponential formal solution,

w(z, y)=exp(L̄FPy) w(z, 0). (33)

Also the basic properties of FFPE are the monotonically decreasing
Mittag–Leffler function of the single modes in time,

Tn(y)=E1/2(−ln, 1/2y1/2). (34)

Comparing with exponential decay of Eq. (4), one can show that Eq. (34)
represents an exact relaxation function for an underlying fractal time walk
process, and that function directly leads to the cole–cole behavior (25) for the
complex susceptibility, which is widely used to describe the experimental
results.

3. SOLUTION OF FFPE VIA OPERATOR METHOD

Consider the FFPE Eq. (19),

w(z, y)=0D
−1/2
y [“2/“z2(w(z, y)/2)−“/“z(w(z, y)/2z)]

with the boundary condition,

Lim
zQ ±.

zkw(z, y)=0 (35)
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and initial condition,

w(z, 0)=d(z−z0), 0 < z0 < 1. (36)

Multiplying Eq. (19) by zk and integrating over z ¥ {−.,.}, the corre-
sponding moment equation takes the form,

Mk(y)=(1/2) 0D
−1/2
y {kMk−2(y)+k(k−1) Mk−2(y)}, (37)

where

Mk(y)=F
.

−.
dz zkw(z, y). (38)

Equation (37) can be rewritten in the operator form,

Mk(y)=0D
−1/2
y C̄Mk(y). (39)

The operator C̄ is defined as,

C̄=(1/2)(k+k(k−1)) E −2 (40)

where E±s is the translation operator defined through, (26)

E±sMk(y)=Mk±s(y). (41)

The general solution of Eq. (39) through Laplace–Mellin transforms
becomes,

Mk(y)=C
.

r=0

y r/2(1/2)r (k+k(k−1))r

C((r/2)+1)
Mk−2r. (42)

The advantage of applying the operator method is obtaining a closed form
for different order of the moments which can be directly evaluated via
Eq. (42). For example, when k=1, 2, the first two moments are really
found to be,

M1(y) ’ c1(k) y1/2/C(3/2), (43a)

and

M2(y) ’ c2(k) y1/2/C(3/2)+c3(k) y/C(2), (43b)

which increases sub-linearly in time and is very similar to the power law
that describes the mean-square displacement, which characterizes the
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anomalous diffusion. ci(k) depends upon the order of the moments. In the
case of first order time evolution, one obtains

Mk(y)=exp(yC̄) Mk(0), (44)

and the corresponding moments relation

Mk(y)=C
.

r=0

y r(1/2)r (k+k(k−1))r

r!
Mk−2r. (45)

4. ANOMALOUS DIFFUSION ON COMB STRUCTURE

Anomalous diffusion on the axis of structure for a comb model takes
the form, (14)

0D
1/2
t p(x, t)=D “

2/“x2 p(x, t). (46)

We can make a little advanced step by generalizing the order of differential
operator with b, 0 < b < 1, which yields, (22)

0D
b
t p(x, t)=D “

2/“x2 p(x, t). (47)

Taking Eq. (47) into the Laplace–Fourier domain this equation becomes,

p(K, u)=ub+1/(DK2+ub), (48)

For a well-behaved function, the mean-square displacement follows the
form,

OX2(t)P=F dx x2p(x, t) —−“2/“K2 p(K, u)|K=0, (49)

where the right-hand side may be found by expansion in K2. Now, using
the expression (48) into (49), one finds

OX2(t)P ’ 1/ub+1 (50)

which is equivalent to Eq. (1) in time domain. Fourier inverse for Eq. (48)
gives

p(x, u)=(x/2pD)1/2 u (3b/4)−1K−1/2(xub/2/D1/2), (51)
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Kc denotes the modified Bessel function of the second kind. Applying the
Laplace–Mellin connection to the above expression, one obtains,

p(x, s)=[(x/2pD)1/2/C(1−s)] F
.

0
du u (3b/4)−1−sK−1/2(xub/2/D1/2). (52)

Upon using the integration procedure in ref. 23, we have,

p(x, t)=p1/2×H2012((x
2/4Dtb)| (1, b)(b, 1)(1, 1)). (53)

The propagator p(x, t) corresponding to the anomalous diffusion exponent
b=1/2 along the axis of the comblike model is shown in Figs. 2 and 3 for
different values of time t.

5. CONCLUSION

Although there has been considerable interest in the problem of ano-
malous diffusion on fractal structure, most results are known only from
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Fig. 2. The distribution function p(x, t) along the axis of structure for the consecutive times
t=0.5, 5, 10, 20 in two dimensions.
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Fig. 3. The behavior of the distribution function p(x, t) with respect to the space and time
along the axis of comblike structure in three-dimensional diagram.

numerical simulations or scaling theories. The comblike model, inspite
of its apparent simplicity, is one of the models in which one can obtain
the exact solution of the anomalous diffusion problem. In this work, the
comblike structure as a model for disordered systems is used to derive
1/2-order FFPE. The resulting equation has been recently proposed in the
literature to describe the anomalous diffusion under the effect of external
fields. Here, we introduce a technique, namely the operator method, to cast
the FFPE into the fractional moment equation. The different orders of
moments can be obtained via Laplace–Mellin transforms and the results
show a sub-linear increase in time. In a force-free trapping-walk case, the
mean square displacement is similar to the hall-mark law that characterizes
the anomalous diffusion processes. This model offers some physical
insights into the origin of fractional dynamics for a system which exhibits
multiple trapping such as the charge carrier transport in amorphous semi-
conductors, (2, 27) or the phase space dynamics of chaotic Hamiltonian sys-
tems. (28) Also, experimental realization might be found in porous media or
possible in Gel Electrophoresis. (29)
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